Duality

Reminder

- Point line duality - Demo
- $(a, b) \sim y=a x-b$
- Given a point p and a line ℓ the duals are D_{p}, D_{ℓ}
- If p is above ℓ then D_{p} is below D_{ℓ}
- If three points are collinear the dual lines intersect in a single point

Warm up

- We have seen that the dual of a line segment is a left-right double wedge
- What type of object in the primal plane would dualize to a topbottom double wedge?
- The complement of a line segment
- What is the dual of the collection of points inside a given triangle with vertices p, q, and r ?
- The union of the three double wedges of the triangle edges

Minimal area triangle

- Given a set of points, we want to find the smallest triangle (by area)

- Naïve algorithm - $O\left(n^{3}\right)$, can we do better?

Minimal area triangle

- Notations:
- $\ell_{i j}$ - the segment between p_{i} and p_{j}
- $h(i, j, k)$ - the distance between $\ell_{i j}$ and p_{k}
- $\ell(i, j, k)$ - the line passing through p_{k} and parallel to $\ell_{i j}$

Minimal area triangle

- Notice that $h(i, j, k)$ is equal to the distance between $\ell_{i j}$ and $\ell(i, j, k)$
- What are parallel lines are mapped to in the dual plane?
- Points with the same x coordinate
- For a given i, j, we only need to consider p_{k} which creates lines $\ell(i, j, k)$ directly above or below i, j
- This problem is easier in the dual plane.

Minimal area triangle

- The dual of $\ell_{i j}$ is the intersection of $D_{p_{i}}$ and $D_{p_{j}}$
- The dual of $\ell(i, j, k)$ is the point of $D_{p_{k}}$ with the same x coordinate as $D_{\ell_{i j}}$
- Thus, for each $\ell_{i j}$ we need to consider the points on the segments directly above and below $D_{\ell_{i j}}$ in the dual plane

Minimal area triangle

- A better algorithm will be as follow:
- Sweep all the lines in the dual plane (i.e. all $D_{p_{i}}$)
- For each intersection $\left(O\left(n^{2}\right)\right)$, look for the lines directly below and above $(O(\log n))$ and calculate the area of the relevant triangles
- Total time: $O\left(n^{2} \log n\right)$
- Can be improved to $O\left(n^{2}\right)$ using topological line sweeping (Edelsbrunner and Guibas, 1989)

Sylvester-Gallai theorem

- In 1893 the following question was raised by Sylvester in a column of mathematical problems:

QUESTIONS FOR SOLUTION.

11851. (Professor Sylvester.)-Prove that it is not possible to arrange any finite number of real points so that a right line through every two of them shall pass through a third, unless they all lie in the same right line.

- In 1943 Erdős raised the problem again. It was proven by Gallai in 1944
- However in 1941, Melchior proved the following theorem:

Given n lines in the plane, there exist at least three intersection points determined by exactly two lines

- Melchior's theorem is the dual version of Sylvester-Gallai theorem (actually, it is slightly stronger)

Sylvester-Gallai theorem

- Melchior's proof for the dual version:
- Consider the planar graph created by a set of n lines
- That is, an edge is a line segment between two intersection points
- Notice that each face have at least 3 edges, and each edge bounds 2 faces, thus: $2 E \geq 3 F \Rightarrow F \leq \frac{2 E}{3}$
- Plugging thus into Euler's characteristic we get $E \leq 3 V-3$
- However, if each vertex was the intersection of 3 lines, there will be at least 3 V edges, which is a contradiction.

Sylvester-Gallai theorem

- In 1958 Kelly published another proof for the primal version which is considered to be the most elegant proof:
- Consider the point-line pair $\left(P_{0}, \ell_{0}\right)$ which minimizes the distance between the point and line.
- Claim: the line ℓ_{0} is determined by only two points.
- Otherwise there will two points on ℓ_{0} on one side of Q (see picture)
- The distance between P_{1} and the line between P_{0} and P_{2} is less than the distance between P_{0} and ℓ_{0}

